Advanced Three-Dimensional Finite Element Modeling of a Slow Landslide through the Exploitation of DInSAR Measurements and in Situ Surveys

نویسندگان

  • Vincenzo De Novellis
  • Raffaele Castaldo
  • Piernicola Lollino
  • Michele Manunta
  • Pietro Tizzani
چکیده

In this paper, we propose an advanced methodology to perform three-dimensional (3D) Finite Element (FE) modeling to investigate the kinematical evolution of a slow landslide phenomenon. Our approach benefits from the effective integration of the available geological, geotechnical and satellite datasets to perform an accurate simulation of the landslide process. More specifically, we fully exploit the capability of the advanced Differential Synthetic Aperture Radar Interferometry (DInSAR) technique referred to as the Small BAseline Subset (SBAS) approach to provide spatially dense surface displacement information. Subsequently, we analyze the physical behavior characterizing the observed landslide phenomenon by means of an inverse analysis based on an optimization procedure. We focus on the Ivancich landslide phenomenon, which affects a residential area outside the historical center of the town of Assisi (Central Italy). Thanks to the large amount of available information, we have selected this area as a representative case study highlighting the capability of advanced 3D FE modeling to perform effective risk analyses of slow landslide processes and accurate urban development planning. In particular, the FE modeling is constrained by using the data from 7 litho-stratigraphic cross-sections and 62 stratigraphic boreholes; and the optimization procedure is carried out using the SBAS-DInSAR retrieved results by processing 39 SAR images collected by the Cosmo-SkyMed (CSK) constellation in the 2009–2012 time span. The achieved results allow us to explore the spatial and temporal evolution of the slow-moving phenomenon and via comparison with the geomorphological data, to derive a synoptic view of the kinematical activity of the urban area affected by the Ivancich landslide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...

متن کامل

Finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers

A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated.  Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.

متن کامل

Three-Dimensional Finite Element Modeling of Stone Column-Improved Soft Saturated Ground

Installing stone columns in the ground is an effective improvement technique to increase the load bearing capacity and reduce the consolidation settlement of the loose or weak cohesive soils. In addition to the increase in the bearing capacity and reduction in the settlement, stone columns can accelerate the dissipation rate of the excess pore water pressure generated by the surcharge, which ex...

متن کامل

Finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers

A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated.  Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.

متن کامل

Impact of Tamper Shape on the Efficiency and Vibrations Induced During Dynamic Compaction of Dry Sands by 3D Finite Element Modeling

Dynamic compaction is a soil improvement method which has been widely used for the increase of bearing capacity through stress wave propagation during heavy tamping. The cost and time of project implementation can be effectively curtailed by developing a model that can be used in the design of dynamic compaction operations. The numerical models offered so far are mostly one or two-dimensional, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016